Author:
González-Ramírez Emilio J.,Etxaniz Asier,Alonso Alicia,M. Goñi Félix
Abstract
ABSTRACTLipidomic analysis of the N-acyl components of sphingolipids in different mammalian tissues had revealed that brain tissue differed from all the other samples in that SM contained mainly C18:0 and C24:1 N-acyl chains, and that the most abundant Cer species was C18:0. Only in the nervous system was C18:0 found in sizable proportions. The high levels of C18:0 and C16:0, respectively in brain and non-brain SM, were important because SM is by far the most abundant sphingolipid in the plasma membrane. In view of these observations, the present paper is devoted to a comparative study of the properties of C16:0 and C18:0 sphingolipids (SM and Cer) pure and in mixtures of increasing complexities, using differential scanning calorimetry, confocal microscopy of giant unilamellar vesicles, and correlative fluorescence microscopy and atomic force microscopy of supported lipid bilayers. Membrane rigidity was measured by force spectroscopy. It was found that in mixtures containing dioleoyl phosphatidylcholine, sphingomyelin and cholesterol, i.e. representing the lipids predominant in the outer monolayer of cell membranes, lateral inhomogeneities occurred, with the formation of rigid domains within a continuous fluid phase. Inclusion of saturated Cer in the system was always found to increase the rigidity of the segregated domains. C18:0-based sphingolipids exhibit hydrocarbon chain-length asymmetry, and some singularities observed with this N-acyl chain, e.g. complex calorimetric endotherms, could be attributed to this property. Moreover, C18:0-based sphingolipids, that are typical of the excitable cells, were less miscible with the fluid phase than their C16:0 counterparts. The results could be interpreted as suggesting that the predominance of C18:0 Cer in the nervous system would contribute to the tightness of its plasma membranes, thus facilitating maintenance of the ion gradients.
Publisher
Cold Spring Harbor Laboratory