MND1 and PSMC3IP control PARP inhibitor sensitivity in mitotic cells

Author:

Zelceski AnabelORCID,Francica PaolaORCID,Lingg Lea,Mutlu Merve,Stok ColinORCID,Liptay MartinORCID,Alexander John,Baxter Joseph S.ORCID,Brough Rachel,Gulati Aditi,Haider Syed,Raghunandan MayaORCID,Song Feifei,Sridhar Sandhya,Forment Josep V.ORCID,O’Connor Mark J.,Davies Barry R.,van Vugt Marcel A.T.M.ORCID,Krastev Dragomir B.ORCID,Pettitt Stephen J.ORCID,Tutt Andrew N. J.ORCID,Rottenberg SvenORCID,Lord Christopher J.ORCID

Abstract

AbstractThe PSMC3IP-MND1 heterodimer promotes RAD51 and DMC1-dependent D-loop formation during meiosis in yeast and mammalian organisms. For this purpose, it catalyzes the DNA strand exchange activities of the recombinases. Interestingly, in a panel of genome-scale CRISPR-Cas9 mutagenesis and interference screens in mitotic cells, we found that depletion of either PSMC3IP or MND1 caused sensitivity to clinical Poly (ADP-Ribose) Polymerase inhibitors (PARPi). A retroviral mutagenesis screen in mitotic cells also identified PSMC3IP and MND1 as genetic determinants of ionizing radiation sensitivity. The role PSMC3IP and MND1 play in preventing PARPi sensitivity in mitotic cells appears to be independent of a previously described role in alternative lengthening of telomeres (ALT). PSMC3IP or MND1 depleted cells accumulate toxic RAD51 foci in response to DNA damage, show impaired homology-directed DNA repair, and become PARPi sensitive, even in cells lacking both BRCA1 and TP53BP1. Although replication fork reversal is also affected, the epistatic relationship between PSMC3IP-MND1 and BRCA1/BRCA2 suggests that the abrogated D-loop formation is the major cause of PARPi sensitivity. This is corroborated by the fact that a PSMC3IP p.Glu201del D-loop formation mutant associated with ovarian dysgenesis fails to reverse PARPi sensitivity. These observations suggest that meiotic proteins such as MND1 and PSMC3IP could have a greater role in mitotic cells in determining the response to therapeutic DNA damage.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3