Combining phenotypic and genomic data to improve prediction of binary traits

Author:

Jarquin Diego,Roy Arkaprava,Clarke Bertrand,Ghosal Subhashis

Abstract

AbstractPlant breeders want to develop cultivars that outperform existing genotypes. Some characteristics (here ‘main traits’) of these cultivars are categorical and difficult to measure directly. It is important to predict the main trait of newly developed genotypes accurately. In addition to marker data, breeding programs often have information on secondary traits (or ‘phenotypes’) that are easy to measure. Our goal is to improve prediction of main traits with interpretable relations by combining the two data types using variable selection techniques. However, the genomic characteristics can overwhelm the set of secondary traits, so a standard technique may fail to select any phenotypic variables. We develop a new statistical technique that ensures appropriate representation from both the secondary traits and the phenotypic variables for optimal prediction. When two data types (markers and secondary traits) are available, we achieve improved prediction of a binary trait by two steps that are designed to ensure that a significant intrinsic effect of a phenotype is incorporated in the relation before accounting for extra effects of genotypes. First, we sparsely regress the secondary traits on the markers and replace the secondary traits by their residuals to obtain the effects of phenotypic variables as adjusted by the genotypic variables. Then, we develop a sparse logistic classifier using the markers and residuals so that the adjusted phenotypes may be selected first to avoid being overwhelmed by the genotypes due to their numerical advantage. This classifier uses forward selection aided by a penalty term and can be computed effectively by a technique called the one-pass method. It compares favorably with other classifiers on simulated and real data.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3