Abstract
AbstractFlexible decision making in complex environments is a hallmark of intelligent behavior but the underlying learning mechanisms and neural computations remain elusive. Through a combination of behavioral, computational and electrophysiological analysis of a novel multidimensional rule-learning paradigm, we show that both rats and humans sequentially probe different behavioral strategies to infer the task rule, rather than learning all possible mappings between environmental cues and actions as current theoretical formulations suppose. This species-conserved process reduces task dimensionality and explains both observed sudden behavioral transitions and positive transfer effects. Behavioral strategies are represented by rat prefrontal activity and strategy-related variables can be decoded from magnetoencephalography signals in human prefrontal cortex. These mechanistic findings provide a foundation for the translational investigation of impaired cognitive flexibility.One-Sentence SummaryBoth rats and humans use behavioral strategies to infer task rules during multidimensional rule-learning.
Publisher
Cold Spring Harbor Laboratory