Two pup vocalization types are genetically and functionally separable in deer mice

Author:

Jourjine N.ORCID,Woolfolk M.L.ORCID,Sanguinetti-Scheck J.I.ORCID,Sabatini J.E.,McFadden S.ORCID,Lindholm A.K.ORCID,Hoekstra H.E.ORCID

Abstract

AbstractVocalization is a widespread vertebrate social behavior that is essential for fitness in the wild. While many vocal behaviors are highly conserved, heritable features of specific vocalization types can vary both within and between species, raising the questions of why and how some vocal behaviors evolve. Here, using new computational tools to automatically detect and cluster vocalizations into distinct acoustic categories, we compare pup isolation calls across neonatal development in eight taxa of deer mice (genusPeromyscus) and compare them to laboratory mice (C57Bl6/j strain) and free-living, wild house mice (Mus musculus musculus). Whereas bothPeromyscusandMuspups produce ultrasonic vocalizations (USVs),Peromyscuspups also produce a second call type with acoustic features, temporal rhythms, and developmental trajectories that are distinct from those of USVs. In deer mice, these tonal and low frequency “cries” are predominantly emitted in postnatal days one through nine, while USVs are primarily made after day nine. Using playback assays, we show that cries result in a more rapid approach byPeromyscusmothers than USVs, suggesting a role for cries in eliciting parental care early in neonatal development. Using genetic crosses between two sister species of deer mice exhibiting large, innate differences in the acoustic structure of cries and USVs, we find that variation in vocalization rate, duration, and pitch display different degrees of genetic dominance and that cry and USV features can be uncoupled in second-generation hybrids. Taken together, this work shows that vocal behavior can evolve quickly between closely related rodent species in which vocalization types, likely serving distinct functions in communication, are controlled by distinct genetic loci.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3