Fish larvae tackle the complex fluid-structure interactions of undulatory swimming with simple actuation

Author:

Voesenek Cees J.ORCID,Li Gen,Muijres Florian T.,van Leeuwen Johan L.ORCID

Abstract

AbstractMost fish swim with body undulations that result from fluid-structure interactions between the fish’s internal tissues and the surrounding water. As just-hatched larvae can swim effectively without a fully-developed brain, we hypothesise that fish larvae tackle the underlying complex physics with simple actuation patterns. To address this hypothesis, we developed a dedicated experimental-numerical approach to calculate the lateral bending moment distributions, which represent the system’s net actuation. The bending moment varies over time and along the fish’s central axis due to muscle actions, passive tissues, inertia, and fluid dynamics. Our 3D analysis of a large dataset of swimming events of larvae from 3 to 12 days after fertilisation shows that these bending moment patterns are not only relatively simple but also strikingly similar throughout early development, and from fast starts to periodic swimming. This suggests also similar muscle activation patterns, allowing fish larvae to produce swimming movements relatively simply, yet effectively, while restructuring their neuromuscular control system.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3