Author:
Donovan J W,Milne G T,Weaver D T
Abstract
Rad51 is essential for efficient repair of DNA double-strand breaks (DSBs) and recombination in Saccharomyces cerevisiae. Here, we examine Rad51 protein-protein interactions and their biological significance. GAL4 two-hybrid fusion analysis demonstrated that the amino-terminal region of Rad51 mediates both a strong Rad51:Rad51 self-association and a Rad51:Rad52 interaction. Several Rad51 variants were characterized that imparted DSB repair defects; these defects appear to result from Rad51 protein-protein interactions. First, a rad51 allele bearing a missense mutation in the consensus ATP-binding sequence disrupted DSB repair in wild-type yeast. The effect of this allele was dependent on the presence of wild-type Rad51 because MMS sensitivity of rad51 delta strains were not increased by its expression. Second, we identified a highly conserved RAD51 homolog from Kluyveromyces lactis (KlRAD51) that only partially complemented rad51 delta strains and impaired DSB repair in wild-type S. cerevisiae. Third, fusions of Gal4 domains to Rad51 disrupted DSB repair in a manner that required the presence of either Rad51 or Rad52. Because K. lactis RAD51 and RAD52 did not complement a S. cerevisiae rad51 delta rad52 delta strain, Rad51-Rad52 functions appear to be mediated through additional components. Thus, multiple types of Rad51 protein interactions, including self-association, appear to be important for DSB repair.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Reference44 articles.
1. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA protein.;Mol. Cell. Biol.,,1992
2. Yeast DNA recombination and repair proteins Rad 1 and Radio constitute a complex in vivo mediated by localized hydrophobic domains
3. Regulated expression of endonuclease EcoRI in Saccharomyces cerevisiae: nuclear entry and biological consequences.
4. Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51.;Mol. Cell. Biol.,1992
5. A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast.
Cited by
101 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献