novoSNP, a novel computational tool for sequence variation discovery

Author:

Weckx Stefan,Del-Favero Jurgen,Rademakers Rosa,Claes Lieve,Cruts Marc,De Jonghe Peter,Van Broeckhoven Christine,De Rijk Peter

Abstract

Technological improvements shifted sequencing from low-throughput, work-intensive, gel-based systems to high-throughput capillary systems. This resulted in a broad use of genomic resequencing to identify sequence variations in genes and regulatory, as well as extended genomic regions. We describe a software package, novoSNP, that conscientiously discovers single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (INDELs) in sequence trace files in a fast, reliable, and user-friendly way. We compared the performance of novoSNP with that of PolyPhred and PolyBayes on two data sets. The first data set comprised 1028 sequence trace files obtained from diagnostic mutation analyses of SCN1A (neuronal voltage-gated sodium channel α-subunit type I gene). The second data set comprised 9062 sequence trace files from a genomic resequencing project aiming at the construction of a high-density SNP map of MAPT (microtubule-associated protein tau gene). Visual inspection of these data sets had identified 38 sequence variations for SCN1A and 488 for MAPT. novoSNP automatically identified all 38 SCN1A variations including five INDELs, while for MAPT only 15 of the 488 variations were not correctly marked. PolyPhred detected far fewer SNPs as compared to novoSNP and missed nearly all INDELs. PolyBayes, designed for the sequence analysis of cloned templates, detected only a limited number of the variations present in the data set. Besides the significant improvement in the automated detection of sequence variations both in diagnostic mutation analyses and in SNP discovery projects, novoSNP also offers a user-friendly interface for inspecting possible genetic variations.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3