A machine learning and drug repurposing approach to target ferroptosis in colorectal cancer stratified by sex and KRAS

Author:

Yan HongORCID,Shen Xinyi,Yao Yisha,Khan Sajid A.,Ma Shuangge,Johnson Caroline H.

Abstract

AbstractThe landscape of sex differences in Colorectal Cancer (CRC) has not been well characterized with respect to the mechanisms of action for oncogenes such as KRAS. However, our recent study showed that tumors from male patients with KRAS mutations have decreased iron-dependent cell death called ferroptosis. Building on these findings, we further examined ferroptosis in CRC, considering both sex of the patient and KRAS mutations, using public databases and our in-house CRC tumor cohort.Through subsampling inference and variable importance analysis (VIMP), we identified significant differences in gene expression between KRAS mutant and wild type tumors from male patients. These genes suppress (e.g.,SLC7A11) or drive (e.g.,SLC1A5) ferroptosis, and these findings were further validated with Gaussian mixed models. Furthermore, we explored the prognostic value of ferroptosis regulating genes and discovered sex- and KRAS-specific differences at both the transcriptional and metabolic levels by random survival forest with backward elimination algorithm (RSF-BE). Of note, genes and metabolites involved in arginine synthesis and glutathione metabolism were uniquely associated with prognosis in tumors from males with KRAS mutations.Additionally, drug repurposing is becoming popular due to the high costs, attrition rates, and slow pace of new drug development, offering a way to treat common and rare diseases more efficiently. Furthermore, increasing evidence has shown that ferroptosis inhibition or induction can improve drug sensitivity or overcome chemotherapy drug resistance. Therefore, we investigated the correlation between gene expression, metabolite levels, and drug sensitivity across all CRC primary tumor cell lines using data from the Genomics of Drug Sensitivity in Cancer (GDSC) resource. We observed that ferroptosis suppressor genes such asDHODH,GCH1, andAIFM2in KRAS mutant CRC cell lines were resistant to cisplatin and paclitaxel, underscoring why these drugs are not effective for these patients. The comprehensive map generated here provides valuable biological insights for future investigations, and the findings are supported by rigorous analysis of large-scale publicly available data and our in-house cohort. The study also emphasizes the potential application of VIMP, Gaussian mixed models, and RSF-BE models in the multi-omics research community. In conclusion, this comprehensive approach opens doors for leveraging precision molecular feature analysis and drug repurposing possibilities in KRAS mutant CRC.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3