Abstract
AbstractOdors provide an important communication channel between plants and animals. Fruits, vital nutrient sources for animals, emit a complex array of monomolecular volatiles. Animals can use the structure of these mixtures to assess properties of fruit predictive of their nutritive and reproductive value. We analyzed the statistics of fruit odor mixtures sampled across stages of ripening and fermentation to find that they fall on a low-dimensional hyperbolic map. Hyperbolic maps, with their negative curvature and an exponentially expanding state options, are adept at describing hierarchical relationships in the data such as those arising from metabolic processes within fruits. In the hyperbolic map, samples followed a striking spiral trajectory. The spiral initiated near the map’s core, representing the under-ripe phase with specific profiles of monomolecular volatiles. Progressively mapping along the unfolding spiral trajectory were scent mixtures corresponding to ripening, and then rotting or fermentation. The unfolding process depended on the specific fermentation processes that dominated in the samples, determined largely by the microbes (e.g. bacteria or yeast) present in the sample. These results generalized across fruit types and describe trajectories in the natural odorant space with significant behavioral relevance for insects.
Publisher
Cold Spring Harbor Laboratory