3D in-situ characterization reveals the instability-induced auxetic behavior of collagen scaffolds for tissue engineering

Author:

Chen EnzeORCID,Kim Byumsu,Bouklas Nikolaos,J. Bonassar Lawrence,Gaitanaros Stavros

Abstract

Collagen scaffolds seeded with human chondrocytes have shown great potential for cartilage repair and regeneration. However, these porous scaffolds buckle under low compressive forces, creating regions of highly localized deformations that can cause cell death and deteriorate the integrity of the engineered tissue. We perform three-dimensional (3D) tomography-based characterization to track the evolution of collagen scaffolds’ microstructure under large deformation. The results illustrate how instabilities produce a spatially varying compaction across the specimens, with more pronounced collapse near the free boundaries. We discover that, independent of differences in pore-size distributions, all collagen scaffolds examined displayed strong auxetic behavior i.e., their transverse area contracts under compression, as a result of the instability cascade. This feature, typically characteristic of engineered metamaterials, is of critical importance for the performance of collagen scaffolds in tissue engineering, especially regarding the persistent challenge of lateral integration in cartilage constructs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3