Intestine-on-chip enhances nutrient and drug metabolism and maturation of iPSC-derived intestinal epithelial cells relative to organoids and Transwells

Author:

Moerkens RenéeORCID,Mooiweer Joram,Smits ElineORCID,Berg Marijn,Ramírez-Sánchez Aarón D.,Modderman Rutger,Puschhof Jens,Pleguezuelos-Manzano Cayetano,Barrett Robert J.ORCID,Wijmenga Cisca,Jonkers Iris H.ORCID,Withoff Sebo

Abstract

AbstractThe human intestinal epithelial barrier is shaped by various biological and biomechanical influences such as growth factor gradients and the flow of intestinal contents. Exposure to these cuesin vitroimpacts the cell type composition and function of adult stem cell (ASC)-derived intestinal epithelial cells, but their effect on human induced pluripotent stem cell (hiPSC)-derived cells is largely unexplored. Here, we characterize and compare the cellular composition and gene expression profiles of hiPSC-derived intestinal epithelial cells exposed to various medium compositions and cultured as organoids, in Transwell and in microfluidic intestine-on-chip systems. We demonstrate that inhibition and activation of the WNT, BMP, NOTCH and MAPK pathways regulates the presence of dividing, absorptive and secretory epithelial lineages within these systems, as has been described for ASC-based systems. Upon differentiation, intestinal epithelial organoids and monolayers in Transwell systems expressed genes involved in important intestinal functions, including digestive enzymes, nutrient transporters and members of the Cytochrome P450 family implicated in drug metabolism. However, the dynamic microenvironment of the intestine-on-chip system induced the strongest upregulation of these genes, with an expression profile that suggests a more mature developmental state. Overall, these results underscore the value of hiPSC-derived intestinal epithelial cells for modeling important functions of the human intestinal epithelial barrier and facilitates the selection of relevant culture conditions for specific applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3