Cellpose as a reliable method for single-cell segmentation of autofluorescence microscopy images

Author:

Riendeau Jeremiah MORCID,Gillette Amani A,Guzman Emmanuel Contreras,Cruz Mario Costa,Kralovec Aleksander,Udgata Shirsa,Schmitz Alexa,Deming Dustin A,Cimini Beth A,Skala Melissa C

Abstract

AbstractAutofluorescence microscopy uses intrinsic sources of molecular contrast to provide cellular-level information without extrinsic labels. However, traditional cell segmentation tools are often optimized for high signal-to-noise ratio (SNR) images, such as fluorescently labeled cells, and unsurprisingly perform poorly on low SNR autofluorescence images. Therefore, new cell segmentation tools are needed for autofluorescence microscopy. Cellpose is a deep learning network that is generalizable across diverse cell microscopy images and automatically segments single cells to improve throughput and reduce inter-human biases. This study aims to validate Cellpose for autofluorescence imaging, specifically from multiphoton intensity images of NAD(P)H. Manually segmented nuclear masks of NAD(P)H images were used to train new Cellpose models. These models were applied to PANC-1 cells treated with metabolic inhibitors and patient-derived cancer organoids (across 9 patients) treated with chemotherapies. These datasets include co-registered fluorescence lifetime imaging microscopy (FLIM) of NAD(P)H and FAD, so fluorescence decay parameters and the optical redox ratio (ORR) were compared between masks generated by the new Cellpose model and manual segmentation. The Dice score between repeated manually segmented masks was significantly lower than that of repeated Cellpose masks (p<0.0001) indicating greater reproducibility between Cellpose masks. There was also a high correlation (R2>0.9) between Cellpose and manually segmented masks for the ORR, mean NAD(P)H lifetime, and mean FAD lifetime across 2D and 3D cell culture treatment conditions. Masks generated from Cellpose and manual segmentation also maintain similar means, variances, and effect sizes between treatments for the ORR and FLIM parameters. Overall, Cellpose provides a fast, reliable, reproducible, and accurate method to segment single cells in autofluorescence microscopy images such that functional changes in cells are accurately captured in both 2D and 3D culture.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3