The development of ecological systems along paths of least resistance

Author:

Deng Jie,Cordero Otto X.ORCID,Fukami TadashiORCID,Levin Simon A.,Pringle Robert M.,Solé Ricard,Saavedra SergueiORCID

Abstract

AbstractA long-standing question in biology is whether there are common principles that characterize the development of ecological systems (the appearance of a group of taxa), regardless of organismal diversity and environmental context. Classic ecological theory holds that these systems develop following a sequenced orderly process that generally proceeds from fast-growing to slow-growing taxa and depends on life-history trade-offs. However, it is also possible that this developmental order is simply the path with the least environmental resistance for survival of the component species and hence favored by probability alone. Here, we use theory and data to show that the order from fast-to slow-growing taxa is the most likely developmental path for diverse systems when local taxon interactions self-organize to minimize environmental resistance. First, we demonstrate theoretically that a sequenced development is more likely than a simultaneous one, at least until the number of iterations becomes so large as to be ecologically implausible. We then show that greater diversity of taxa and life histories improves the likelihood of a sequenced order from fast-to slow-growing taxa. Using data from bacterial and metazoan systems, we present empirical evidence that the developmental order of ecological systems moves along the paths of least environmental resistance. The capacity of simple principles to explain the trend in the developmental order of diverse ecological systems paves the way to an enhanced understanding of the collective features characterizing the diversity of life.

Publisher

Cold Spring Harbor Laboratory

Reference102 articles.

1. Gould, S. J . (1989). Wonderful Life. W. W. Norton & Company, New York.

2. The Strategy of Ecosystem Development

3. Solé, R. V. and Bascompte, J. (2005). Self-Organization in Complex Ecosystems.(MPB-42). Vol. 58. Princeton University Press.

4. Margalef, R . (1968). Perspectives in Ecological Theory. University of Chicago Press.

5. Paleobiology, Community Ecology, and Scales of Ecological Pattern

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3