Effect of TIMPs and Their Minimally Engineered Variants in Blocking Invasion and Migration of Brain Cancer Cells

Author:

Taheri Elham,Raeeszadeh-Sarmazdeh Maryam

Abstract

ABSTRACTMatrix metalloproteinases (MMPs) play a pivotal role in extracellular matrix (ECM) remodeling, influencing various aspects of cancer progression including migration, invasion, angiogenesis, and metastasis. Overexpression of MMPs, particularly MMP-2 and MMP-9, is notably pronounced in glioblastoma multiforme (GBM), a highly aggressive primary brain tumor characterized by diffuse and infiltrative behavior. Previous attempts to develop small molecule MMP inhibitors have failed in clinical trials, necessitating the exploration of more stable and selective alternatives. Tissue inhibitors of metalloproteinases (TIMPs), endogenous human proteins, offer promising potential due to their stability and broader interaction interfaces compared to small molecule inhibitors. In this study, we examined the effectiveness of wild-type human TIMP-1 and TIMP-3, alongside engineered minimal TIMP variants (mTC1 and mTC3), specifically designed for targeted MMP inhibition to reduce the migratory and invasive capabilities of GBM cells. Our investigation focused on these minimal TIMP variants, which provide enhanced tissue penetration and cellular uptake due to their small molecular weight, aiming to validate their potential as therapeutic agents. The results demonstrated that mTC1 and mTC3 effectively inhibit MMP activity, a critical factor in GBM aggressiveness, thereby highlighting their promise in controlling tumor spread. Given the lethality of GBM and the limited effectiveness of current treatments, the application of engineered TIMP variants represents a novel and potentially transformative therapeutic approach. By offering targeted MMP inhibition, these variants may significantly improve patient outcomes, providing new avenues for treatment and enhancing the survival and quality of life for patients with this devastating disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3