DNA binding is rate-limiting for natural transformation

Author:

Ellison Taylor J.,Ellison Courtney K.ORCID

Abstract

AbstractBacteria take up environmental DNA using dynamic appendages called type IV pili (T4P) to elicit horizontal gene transfer in a process called natural transformation. Natural transformation is widespread amongst bacteria yet determining how different factors universally contribute to or limit this process across species has remained challenging. Here we show thatAcinetobacter baylyi, the most naturally transformable species, is highly transformable due to its ability to robustly bind nonspecific DNA via a dedicated orphan minor pilin, FimT. We show that, compared to its homologues,A. baylyiFimT contains multiple positively charged residues that additively promote DNA binding efficiency. Expression ofA. baylyiFimT in a closely relatedAcinetobacterpathogen is sufficient to substantially improve its capacity for natural transformation, demonstrating that T4P-DNA binding is a rate-limiting step in this process. These results demonstrate the importance of T4P-DNA binding efficiency in driving natural transformation, establishing a key factor limiting horizontal gene transfer.ImportanceNatural transformation is a multi-step, broadly conserved mechanism for horizontal gene transfer in which bacteria take up exogenous DNA from the environment and integrate it into their genome by homologous recombination. A complete picture of the factors that limit this behavior remain unclear due to variability between bacterial systems. In this manuscript, we provide clear and direct evidence that DNA binding by type IV pili prior to DNA uptake is a rate-limiting step of natural transformation. We show that increasing DNA binding in antibiotic resistant Acinetobacter pathogens can boost their transformation rates by 100-fold. In addition to expanding our understanding of the factors that limit transformation in the environment, these results will also contribute to a deeper understanding of the spread of antibiotic resistance genes in relevant human pathogens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3