HistoGWAS: An AI-enabled Framework for Automated Genetic Analysis of Tissue Phenotypes in Histology Cohorts

Author:

Chaudhary Shubham,Voigts Almut,Bereket Michael,Albert Matthew L.,Schwamborn Kristina,Zeggini Eleftheria,Casale Francesco PaoloORCID

Abstract

AbstractUnderstanding how genetic variation affects tissue structure and function is crucial for deciphering disease mechanisms, yet comprehensive methods for genetic analysis of tissue histology are currently lacking. We address this gap with HistoGWAS, a framework that merges AI-driven tissue characterization with fast variance component models for scalable genetic association testing. This integration enables automated, genome-wide assessments of variant effects on tissue histology and facilitates the visualization of phenotypes linked to significant genetic loci. Applying HistoGWAS to eleven tissue types from the GTEx cohort, we identified four genome-wide significant loci, which we linked to distinct tissue histological and gene expression changes. Ultimately, a power analysis confirms HistoGWAS’s effectiveness in large-scale histology cohorts, underscoring its transformative potential in studying the effects of genetic variations on tissue and their role in health and disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3