Abstract
AbstractVisual attention and object recognition are two critical cognitive functions that significantly influence our perception of the world. While these neural processes converge on the temporal cortex, the exact nature of their interactions remains largely unclear. Here, we systematically investigated the interplay between visual attention and object feature coding by training macaques to perform a free-gaze visual search task using natural face and object stimuli. With a large number of units recorded from multiple brain areas, we discovered that units exhibiting visual feature coding displayed a distinct attentional response profile and functional connectivity compared to units not exhibiting feature coding. Attention directed towards search targets enhanced the pattern separation of stimuli across brain areas, and this enhancement was more pronounced for units encoding visual features. Our findings suggest two stages of neural processing, with the early stage primarily focused on processing visual features and the late stage dedicated to processing attention. Importantly, feature coding in the early stage could predict the attentional effect in the late stage. Together, our results suggest an intricate interplay between visual feature and attention coding in the primate brain, which can be attributed to the differential functional connectivity and neural networks engaged in these processes.
Publisher
Cold Spring Harbor Laboratory