Origin, Trophic Transfer And Recycling Of Particulate Organic Matter In The Waters Of Two Upwelling Bays Of Humboldt Current System: Insights From Compound-Specific Isotopic Compositions Of Amino Acids

Author:

Srain B.M,Valdés J,Camaño A

Abstract

AbstractParticulate organic matter (POM) is considered the primary source of N and C in the ocean. In pelagic marine environments, POM consists of algae and detrital nitrogen, with amino acids representing the largest chemical fraction. Currently, measurements of the isotopic distributions of N atoms in amino acids are considered powerful tools for exploring and determining the metabolic sources involved in the synthesis and degradation of organic matter. In this study, we measured the δ15N of amino acid signatures (δ15N-AA) in suspended and sinking POM collected from two upwelling bays in northern Chile, to examine isotopic enrichment patterns and gain insights into the origins, trophic transfer, and heterotrophic reworking of this organic fraction. At Mejillones Bay, the δ15N-AA values of suspended POM ranged from 5 ‰ to 27 ‰, while at Antofagasta Bay, these values oscillated between 9 ‰ and 24 ‰. The sinking POM collected from sediment traps exhibited values and isotopic fractionation patterns similar to those observed in the deeper layers of the water columns in both bays. The enrichment patterns of δ15N-phenylalanine and δ15N-NO-demonstrated the autochthonous character of the POM and its predominantly marine origin at both bays. The parameters trophic transfer (ΔTr) and heterotrophic reworking (ΣV) indicated that the heterotrophic recycling of POM occurs more intensively at through the oxyclines. Furthermore, these parameters revealed an enhanced trophic transfer magnitude and higher heterotrophic re-synthesis of POM in the waters of Mejillones Bay, resulting in a lower flux of exported POM than that observed in Antofagasta Bay. These differences highlight the spatial heterogeneous nature of organic matter transfer and reworking processes in this upwelling system.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3