Small molecule NS11021 promotes BK channel activation by increasing inner pore hydration

Author:

Nordquist Erik B.,Jia Zhiguang,Chen JianhanORCID

Abstract

AbstractThe Ca2+and voltage-gated big potassium (BK) channels are implicated in various diseases including heart disease, asthma, epilepsy and cancer, but remains an elusive drug target. A class of negatively charged activators (NCAs) have been demonstrated to promote the activation of several potassium channels including BK channels by binding to the hydrophobic inner pore; yet the underlying molecular mechanism of action remains poorly understood. In this work, we analyze the binding mode and potential activation mechanism of a specific NCA named NS11021 using atomistic simulations. The results show that NS11021 binding to the pore in deactivated BK channels is nonspecific and dynamic. The binding free energy of -8.3±0.7 kcal/mol (KD= 0.3-3.1 μM) calculated using umbrella sampling agrees quantitatively with the experimental EC50 range of 0.4-2.1 μM. The bound NS11021 remains dynamic and is distal from the filter to significantly impact its conformation. Instead, NS11021 binding significantly enhances the pore hydration due to the charged tetrazol-phenyl group, thereby promoting the opening of the hydrophobic gate. We further show that the free energy barrier to K+permeation is reduced by ∼3 kcal/mol regardless of the binding pose, which could explain the ∼62-fold increase in the intrinsic opening of BK channels measured experimentally. Taken together, these results support that the molecular mechanism of NS11021 derives from increasing the hydration level of the conformationally closed pore, which does not depend on specific binding and likely explains the ability of NCAs to activate multiple K+channels.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3