CPI203, a BET inhibitor, down-regulates a consistent set of DNA synthesis genes across a wide array of glioblastoma lines

Author:

Garrett Matthew C.ORCID,Carnwath Troy,Albano Rebecca,Zhuang Yonghua,Behrmann Catherine A.,Pemberton Merissa,Barakat FarahORCID,Lober Robert,Hoeprich Mark,Paravati Anthony,Reed Marilyn,Spry Hailey,Woo Daniel,O’Brien Eric,VanCauwenbergh Brett,Perentesis John,Nasser Rani,Medvedovic Mario,Plas David R.

Abstract

AbstractIntroductionGlioblastomas utilize malignant gene expression pathways to drive growth. Many of these gene pathways are not directly accessible with molecularly targeted pharmacological agents. Chromatin-modifying compounds can alter gene expression and target glioblastoma growth pathways. In this study, we utilize a systematic screen of chromatin-modifying compounds on a panel of patient-derived glioblastoma lines to identify promising compounds and their associated gene targets.MethodsFive glioblastoma cell lines were subjected to a drug screen of 106 chromatin-modifying compounds representing 36 unique drug classes to determine the twelve most promising drug classes and the best candidate inhibitors in each class. These twelve drugs were then tested with a panel of twelve patient-derived gliomasphere lines to identify growth inhibition and corresponding gene expression patterns. Overlap analysis and weighted co-expression network analysis (WCGNA) were utilized to determine potential target genes and gene pathways.ResultsThe initial drug screen identified twelve candidate pharmacologic agents for further testing. Drug sensitivity testing indicated an overall high degree of variability between gliomasphere lines. However, CPI203 was the most consistently effective compound, and the BET inhibitor class was the most consistently effective class of compounds across the gliomasphere panel. Correspondingly, most of the compounds tested had highly variable effects on gene expression between gliomasphere lines. CPI203 stood out as the only compound to induce a consistent effect on gene expression across different gliomasphere lines, specifically down-regulation of DNA-synthesis genes. Amongst the twelve tested cell lines, high expression of CDKN2A and CDKN2B distinguished more drug sensitive from more drug resistant lines. WCGNA identified two oncogenic gene modules (FBXO5 and MELK) that were effectively downregulated by CPI203 (FBXO5) and ML228 (FBXO5 and MELK).ConclusionsThe bromodomain inhibitor CPI203 induced relatively consistent effects on gene expression and growth across a variety of glioblastoma lines, specifically down-regulating genes associated with DNA replication. We propose that clinically effective BET inhibitors have the potential to induce consistent beneficial effects across a spectrum of glioblastomas.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3