Wound closure after brain injury relies on force generation by microglia in zebrafish

Author:

El-Daher FrancoisORCID,Drake Louisa K.,Enos Stephen J.,Wehner DanielORCID,Westphal Markus,Porter Nicola J.,Becker Catherina G.ORCID,Becker ThomasORCID

Abstract

Wound closure after a brain injury is critical for tissue restoration but this process is still not well characterised at the tissue level. We use live observation of wound closure in larval zebrafish after inflicting a stab wound to the brain. We demonstrate that the wound closes in the first 24 hours after injury by global tissue contraction. Microglia accumulation at the point of tissue convergence precedes wound closure and computational modelling of this process indicates that physical traction by microglia could lead to wound closure. Indeed, genetically or pharmacologically depleting microglia leads to defective tissue repair. Live observations indicate centripetal deformation of astrocytic processes contacted by migrating microglia. Severing such contacts leads to retraction of cellular processes, indicating tension. Weakening tension by disrupting the F-actin stabilising gene lcp1 in microglial cells, leads to failure of wound closure. Therefore, we propose a previously unidentified mechanism of brain repair in which microglia has an essential role in contracting spared tissue. Understanding the mechanical role of microglia will support advances in traumatic brain injury therapiesGraphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3