Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning

Author:

Cai ZhaoxiangORCID,Apolinário SofiaORCID,Baião Ana R.ORCID,Pacini ClareORCID,Sousa Miguel D.ORCID,Vinga SusanaORCID,Reddel Roger RORCID,Robinson Phillip J.ORCID,Garnett Mathew J.ORCID,Zhong QingORCID,Gonçalves EmanuelORCID

Abstract

AbstractMulti-omic characterization and integration remains a challenge due to data complexity and sparsity. Addressing this, our study introduces an unsupervised deep learning model, MOVE (Multi-Omic Variational Encoder), specifically designed to integrate and augment the Cancer Dependency Map (DepMap). Harnessing orthogonal multi-omic information, this model successfully generates molecular and phenotypic profiles, resulting in an increase of 32.7% in the number of multi-omic profiles and thereby generating a complete DepMap for 1,523 cancer cell lines. The synthetically enhanced data increases statistical power, uncovering less studied mechanisms associated with drug resistance, and refines the identification of genetic associations and clustering of cancer cell lines. By applying SHAP for model interpretation, MOVE reveals multi-omic features essential for cell clustering and biomarker identification related to drug and gene dependencies. This understanding is crucial for the development of much-needed, effective strategies in prioritizing cancer targets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3