Uncovering social states in healthy and clinical populations using digital phenotyping and Hidden Markov Models

Author:

Leaning Imogen E.ORCID,Costanzo Andrea,Jagesar Raj,Reus Lianne M.,Visser Pieter Jelle,Kas Martien J.H.,Beckmann Christian,Ruhé Henricus G.,Marquand Andre F.

Abstract

AbstractBrain related disorders are characterised by observable behavioural symptoms. Smartphones can passively collect objective behavioural data, avoiding recall bias. Despite promising clinical utility, analysing smartphone data is challenging as datasets often include a range of missingness-prone temporal features. Hidden Markov Models (HMMs) provide interpretable, lower-dimensional temporal representations of data, allowing missingness. We applied an HMM to an aggregate dataset of smartphone measures designed to assess social functioning in healthy controls (HCs) (n=247), participants with schizophrenia (n=18), Alzheimer’s disease (AD) (n=26) and memory complaints (n=57). We selected a model with socially “active” and “inactive” states, generated hidden state sequences per participant and calculated their “dwell time”, i.e. the percentage of time spent in the socially active state. We identified lower dwell times in AD versus HCs and higher dwell times related to increased social functioning questionnaire scores in HCs, finding the HMM to be a practical method for digital phenotyping analysis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3