Abstract
Salamanders are important tetrapod models to study brain organization and regeneration, however the identity and evolutionary conservation of brain cell types is largely unknown. Here, we delineate cell populations in the axolotl telencephalon during homeostasis and regeneration, representing the first single-cell genomic and spatial profiling of an anamniote tetrapod brain. We identify glutamatergic neurons with similarities to amniote neurons of hippocampus, dorsal and lateral cortex, and conserved GABAergic neuron classes. We infer transcriptional dynamics and gene regulatory relationships of postembryonic, region-specific direct and indirect neurogenesis, and unravel conserved signatures. Following brain injury, ependymoglia activate an injury-specific state before reestablishing lost neuron populations and axonal connections. Together, our analyses yield key insights into the organization, evolution, and regeneration of a tetrapod nervous system.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献