Abstract
AbstractTrinucleotide repeat expansions are responsible for two dozen human disorders. Contracting expanded repeats by Double-Strand Break Repair (DSBR) might be a therapeutic approach. Given the complexity of manipulating human cells, recent assays were made to quantify DSBR efficacy in yeast, using a fluorescent reporter. In this study DSBR is characterized with an interdisciplinary approach, linking large population dynamics and individual cells. Time-resolved molecular measurements of changes in the population are first confronted to a coupled differential equation model to obtain repair processes rates. Comparisons with measurements in microfluidic devices, where the progeny of 80-150 individual cells are followed, show good agreement between individual trajectories and mathematical and molecular results. Further analysis of individual progenies shows the heterogeneity of individual cell contributions to global repair efficacy. Three different categories of repair are identified: high-efficacy error-free, low-efficacy error-free and low-efficacy error-prone. These categories depend on the type of endonuclease used and on the target sequence.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献