Evolutionary safety of death by mutagenesis

Author:

Lobinska Gabriela,Pilpel Yitzhak,Nowak Martin A

Abstract

Nucleoside analogs are a major class of antiviral drugs. Some act by increasing the viral mutation rate causing “death by mutagenesis” of the virus. Their mutagenic capacity, however, may lead to an evolutionary safety concern. We define evolutionary safety as a probabilistic assurance that the treatment will not generate an increased number of epidemiologically concerning mutated virus progeny. We develop a mathematical framework to estimate the total mutant load produced with and without mutagenic treatment. We predict rates of appearance of virus mutants as a function of the timing of treatment and the immune competence of patients, employing various assumptions about the vulnerability of the viral genome and its potential to generate undesired phenotypes. We focus on the case study of Molnupiravir, which is an FDA-approved treatment against COVID-19. We estimate that Molnupiravir is narrowly evolutionarily safe, subject to the current estimate of parameters. Evolutionary safety can be improved by restricting treatment to individuals with a low clearance rate and by designing treatments that lead to a greater increase in mutation rate. We report a simple rule to determine the fold-increase in mutation rate required to obtain evolutionary safety which is also applicable to other pathogen-treatment combinations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3