Combinatorial interactions of Hox genes establish appendage diversity of the amphipod crustacean Parhyale hawaiensis

Author:

Alberstat Erin Jarvis,Chung Kevin,Sun Dennis AORCID,Ray Shagnik,Patel Nipam H.ORCID

Abstract

AbstractHox genes establish regional identity along the anterior-posterior axis in diverse animals. Changes in Hox expression can induce striking homeotic transformations, where one region of the body is transformed into another. Previous work in Drosophila has demonstrated that Hox cross-regulatory interactions are crucial for maintaining proper Hox expression. One major mechanism is the phenomenon of “posterior prevalence”, wherein anterior Hox genes are repressed by more posterior Hox genes. Loss of posterior Hox expression under this model would predict posterior-to-anterior transformations, as is frequently observed in Drosophila. While posterior prevalence is thought to occur in many animals, studies of such Hox cross-regulation have focused on a limited number of organisms. In this paper, we examine the cross-regulatory interactions of three Hox genes, Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-B (Abd-B) in patterning thoracic and abdominal appendages in the amphipod crustacean Parhyale hawaiensis. Studies of Hox function in Parhyale have previously revealed two striking phenotypes which differed markedly from what a “posterior prevalence” model would predict, including non-contiguous and anterior-to-posterior transformations. We probe the logic of Parhyale Hox cross-regulation by using CRISPR/Cas9 to systematically examine all combinations of Ubx, abd-A, and Abd-B loss of function in Parhyale. By analyzing homeotic phenotypes and examining the expression of additional Hox genes, we reveal Hox cross-regulatory interactions in Parhyale. From these data, we also demonstrate that some Parhyale Hox genes function combinatorially to specify posterior limb identity, rather than abiding by a posterior prevalence mechanism. These results provide evidence that combinatorial Hox interactions may be responsible for the tremendous body plan diversity of crustaceans.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3