Vomocytosis ofCryptococcus neoformanscells from murine, bone marrow-derived dendritic cells

Author:

Pacifici Noah,Cruz-Acuña Melissa,Diener Agustina,Senthil Neeraj,Han Hyunsoo,Lewis Jamal S.ORCID

Abstract

AbstractCryptococcus neoformans(CN) cells survive within the acidic phagolysosome of macrophages for extended times, then escape without impacting the viability of the host cell via a phenomenon that has been coined ‘vomocytosis’. Through this mechanism, CN disseminate throughout the body, sometimes resulting in a potentially fatal condition - Cryptococcal Meningitis (CM). Justifiably, vomocytosis studies have focused primarily on macrophages, as alveolar macrophages within the lung act as first responders that ultimately expel this fungal pathogen. Herein, we hypothesize that dendritic cells (DCs), an innate immune cell with attributes that include phagocytosis and antigen presentation, can also act as ‘vomocytes’. Presciently, this report shows that vomocytosis of CN indeed occurs from DCs. Primarily through time-lapse microscopy imaging, we show that rates of vomocytosis events from DCs are comparable to those seen from macrophages and further, are independent of the presence of the CN capsule and infection ratios. Moreover, phagosome-altering drugs such as chloroquine and bafilomycin A, as well as the actin-modifying drug, cytochalasin B inhibit this phenomenon from DCs. Although DC immunophenotype does not affect the total number of vomocytic events, we observed differences in the numbers of CN per phagosome and expulsion times. Interestingly, these observations were similar in primary, murine macrophages. Understanding the vomocytic behavior of different phagocytes and their phenotypic subtypes is needed to help elucidate the full picture of the dynamic interplay between CN and the immune system. Critically, deeper insight into vomocytosis could reveal novel approaches to treat CM, as well as other immune-related conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3