Abstract
AbstractThe bacterium Mycobacterium tuberculosis (Mtb) causes tuberculosis (TB) and is responsible for more human mortality than any other single pathogen1. Although ~1.7 billion people are infected with Mtb2, most infections are asymptomatic. Progression to active disease occurs in ~10% of infected individuals and is predicted by an elevated type I interferon (IFN) response3–8. Type I IFNs are vital for antiviral immunity, but whether or how they mediate susceptibility to Mtb has been difficult to study, in part because the standard C57BL/6 (B6) mouse model does not recapitulate the IFN-driven disease that appears to occur in humans3–5,8. Here we examined B6. Sst1S congenic mice that carry the C3H “sensitive” allele of the Sst1 locus that renders them highly susceptible to Mtb infections9,10. We found that B6.Sst1S mice exhibit markedly increased type I IFN signaling, and that type I IFNs were required for the enhanced susceptibility of B6. Sst1S mice to Mtb. Type I IFNs affect the expression of hundreds of genes, several of which have previously been implicated in susceptibility to bacterial infections11,12. Nevertheless, we found that heterozygous deficiency in just a single IFN target gene, IL-1 receptor antagonist (IL-1Ra), is sufficient to reverse IFN-driven susceptibility to Mtb. As even a partial reduction in IL-1Ra levels led to significant protection, we hypothesized that IL-1Ra may be a plausible target for host-directed anti-TB therapy. Indeed, antibody-mediated neutralization of IL-1Ra provided therapeutic benefit to Mtb-infected B6. Sst1S mice. Our results illustrate how the diversity of inbred mouse strains can be exploited to better model human TB, and demonstrate that IL-1Ra is an important mediator of type I IFN-driven susceptibility to Mtb infections in vivo.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献