Evaluating the Potential of Younger Cases and Older Controls Cohorts to Improve Discovery Power in Genome-wide Association Studies of Late-onset Diseases

Author:

Oliynyk Roman TeoORCID

Abstract

AbstractFor more than a decade, genome-wide association studies have been making steady progress in discovering the causal gene variants that contribute to late-onset human diseases. Polygenic late-onset diseases in an aging population display the risk allele frequency decrease at older ages, caused by individuals with higher polygenic risk scores becoming ill proportionately earlier and bringing about a change in the distribution of risk alleles between new cases and the as-yet-unaffected population. This phenomenon is most prominent for diseases characterized by high cumulative incidence and high heritability, examples of which include Alzheimer’s disease, coronary artery disease, cerebral stroke, and type 2 diabetes, while for late-onset diseases with relatively lower prevalence and heritability, exemplified by cancers, the effect is significantly lower. Computer simulations have determined that genome-wide association studies of the late-onset polygenic diseases showing high cumulative incidence together with high initial heritability will benefit from using the youngest possible age-matched cohorts. Moreover, rather than using age-matched cohorts, study cohorts combining the youngest possible cases with the oldest possible controls may significantly improve the discovery power of genome-wide association studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3