The malaria-protective human glycophorin structural variant DUP4 shows somatic mosaicism and association with hemoglobin levels

Author:

Algady Walid,Louzada Sandra,Carpenter Danielle,Brajer Paulina,Färnert Anna,Rooth Ingegerd,Yang Fengtang,Shaw Marie-Anne,Hollox Edward JORCID

Abstract

AbstractGlycophorin A and glycophorin B are red blood cell surface proteins that are both receptors for the parasite Plasmodium falciparum, which is the principal cause of malaria in sub-Saharan Africa. DUP4 is a complex structural genomic variant that carries extra copies of a glycophorin A - glycophorin B fusion gene, and has a dramatic effect on malaria risk by reducing the risk of severe malaria by up to 40%. Using fiber-FISH and Illumina sequencing, we validate the structural arrangement of the glycophorin locus in the DUP4 variant, and reveal somatic variation in copy number of the glycophorin A-glycophorin B fusion gene. By developing a simple, specific, PCR-based assay for DUP4 we show the DUP4 variant reaches a frequency of 13% in a village in south-eastern Tanzania. We genotype a substantial proportion of that village and demonstrate an association of DUP4 genotype with hemoglobin levels, a phenotype related to malaria, using a family-based association test. Taken together, we show that DUP4 is a complex structural variant that may be susceptible to somatic variation, and show that it is associated with a malarial-related phenotype in a non-hospitalized population.Significance statementPrevious work has identified a human complex genomic structural variant called DUP4, which includes two novel glycophorin A-glycophorin B fusion genes, is associated with a profound protection against severe malaria. In this study, we present data showing the molecular basis of this complex variant. We also show evidence of somatic variation in the copy number of the fusion genes. We develop a simple robust assay for this variant and demonstrate that DUP4 is at an appreciable population frequency in Tanzania and that it is associated with higher hemoglobin levels in a malaria-endemic village. We suggest that DUP4 is therefore protective against malarial anemia.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3