Breast tumor-associated metalloproteases restrict reovirus oncolysis by cleaving the σ1 cell-attachment protein, and can be overcome by mutation of σ1

Author:

Fernandes Jason,Cristi Francisca,Eaton Heather,Chen Patricia,Haeflinger Sarah,Bernard Isabelle,Hitt Mary,Shmulevitz Maya

Abstract

ABSTRACTReovirus is undergoing clinical testing as an oncolytic therapy for breast cancer. Given that reovirus naturally evolved to thrive inentericenvironments, we sought to better understand howbreast tumormicroenvironments impinge on reovirus infection. Reovirus was treated with extracellular extracts generated from polyoma virus middle T-antigen-derived mouse breast tumors. Unexpectedly, these breast tumor extracellular extracts inactivated reovirus, reducing infectivity of reovirus particles by 100-fold. Mechanistically, inactivation was attributed to proteolytic cleavage of the viral cell attachment protein σ1, which diminished virus binding to sialic acid-low tumor cells. Among various specific protease class inhibitors and metal ions, EDTA and ZnCl2effectively modulated σ1 cleavage, indicating that breast tumor-associated zinc-dependent metalloproteases are responsible for reovirus inactivation. Moreover, media from MCF7, MB468, MD-MB-231 and HS578T breast cancer cell lines recapitulated σ1 cleavage and reovirus inactivation, suggesting that inactivation of reovirus is shared among mouse and human breast cancers, and that breast cancer cells in by themselves can be a source of reovirus-inactivating proteases. Binding assays and quantification of sialic acid (SA) levels on a panel of cancer cells showed that truncated σ1 reduced virus binding to cells with low surface SA. To overcome this restriction, we generated a reovirus mutant with a mutation (T249I) in σ1 that prevents σ1 cleavage and inactivation by breast tumor-associated proteases. The mutant reovirus showed similar replication kinetics in tumorigenic cells, equivalent toxicity as wild-type reovirus in a severely compromised mouse model, and increased tumor titers. Overall, the data shows that tumor microenvironments have the potential to reduce infectivity of reovirus.SIGNIFICANCEWe demonstrate that metalloproteases in breast tumor microenvironments can inactivate reovirus. Our findings expose that tumor microenvironment proteases could have negative impact on proteinaceous cancer therapies such as reovirus, and that modification of such therapies to circumvent inactivation by tumor metalloproteases merits consideration.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3