Mitf links neuronal activity and long-term homeostatic intrinsic plasticity

Author:

Atacho Diahann A. M.,Reynisson Hallur,Pétursdóttir Anna Þóra,Eysteinsson Thor,Steingrímsson Eiríkur,Henry Petersen Pétur

Abstract

AbstractNeuroplasticity forms the basis for neuronal circuit complexity and can determine differences between otherwise similar circuits. Although synaptic plasticity is fairly well characterized, much less is known about the molecular mechanisms underlying intrinsic plasticity, especially its transcriptional regulation. We show that the Microphthalmia-associated transcription factor (Mitf), best known as the master regulator of melanocytic cell fate and differentiation, plays a central role in homeostatic intrinsic plasticity of olfactory bulb (OB) projection neurons. Mitral and tufted (M/T) neurons from Mitf mutant mice are hyperexcitable due to reduced Type-A potassium current (IA) and they exhibit reduced expression of Kcnd3, which encodes a potassium voltage-gated channel subunit (Kv4.3) important for generating the IA. Furthermore, expression of the Mitf and Kcnd3 genes is activity-dependent in OB projection neurons, The MITF protein binds to and activates expression from Kcnd3 regulatory elements. Activity can therefore affect Kcnd3 expression directly via MITF. Moreover, Mitf mutant mice have changes in olfactory habituation and have increased habitutation for an odourant following long-term exposure, indicating that regulation of Kcnd3 is pivotal for long-term olfactory adaptation. Our findings show that Mitf acts as a direct regulator of intrinsic homeostatic feedback, plays a key role in olfactory adaptation and links neuronal activity, transcriptional changes and neuronal function.Significance statementA direct, Mitf-dependent link between neuronal activity and homeostatic changes in the expression of a key potassium channel subunit is demonstrated in projection neurons of the mouse OB. This is one of the first studies that directly link activity and genetically defined changes in intrinsic plasticity, leading to changes in neuronal response. These findings broaden the general understanding of transcriptional regulation of homeostatic intrinsic plasticity in learning and memory. The results are also important for understanding the role of Mitf in other cell types. Regulation of intrinsic plasticity has wide-ranging implications and fundamental importance for neurological diseases such as neurodegeneration, autism and epilepsy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3