Scalable and Accurate Drug–target Prediction Based on Heterogeneous Bio-linked Network Mining

Author:

Zong Nansu,Wong Rachael Sze Nga,Ngo Victoria,Yu Yue,Li Ning

Abstract

AbstractMotivationDespite the existing classification- and inference-based machine learning methods that show promising results in drug-target prediction, these methods possess inevitable limitations, where: 1) results are often biased as it lacks negative samples in the classification-based methods, and 2) novel drug-target associations with new (or isolated) drugs/targets cannot be explored by inference-based methods. As big data continues to boom, there is a need to study a scalable, robust, and accurate solution that can process large heterogeneous datasets and yield valuable predictions.ResultsWe introduce a drug-target prediction method that improved our previously proposed method from the three aspects: 1) we constructed a heterogeneous network which incorporates 12 repositories and includes 7 types of biomedical entities (#20,119 entities, # 194,296 associations), 2) we enhanced the feature learning method with Node2Vec, a scalable state-of-art feature learning method, 3) we integrate the originally proposed inference-based model with a classification model, which is further fine-tuned by a negative sample selection algorithm. The proposed method shows a better result for drug–target association prediction: 95.3% AUC ROC score compared to the existing methods in the 10-fold cross-validation tests. We studied the biased learning/testing in the network-based pairwise prediction, and conclude a best training strategy. Finally, we conducted a disease specific prediction task based on 20 diseases. New drug-target associations were successfully predicted with AUC ROC in average, 97.2% (validated based on the DrugBank 5.1.0). The experiments showed the reliability of the proposed method in predicting novel drug-target associations for the disease treatment.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3