Bayesian inference of agent-based models: a tool for studying kidney branching morphogenesis

Author:

Lambert BenORCID,MacLean Adam L.,Fletcher Alexander G.,Combes Alexander N.,Little Melissa H.,Byrne Helen M.

Abstract

AbstractThe adult mammalian kidney has a complex, highly-branched collecting duct epithelium that arises as a ureteric bud sidebranch from an epithelial tube known as the nephric duct. Subsequent branching of the ureteric bud to form the collecting duct tree is regulated by subcellular interactions between the epithelium and a population of mesenchymal cells that surround the tips of outgrowing branches. The mesenchymal cells produce glial cell-line derived neurotrophic factor (GDNF), that binds with RET receptors on the surface of the epithelial cells to stimulate several subcellular pathways in the epithelium. Such interactions are known to be a prerequisite for normal branching development, although competing theories exist for their role in morphogenesis. Here we introduce the first agent-based model of ex vivo kidney uretic branching. Through comparison with experimental data, we show that growth factor-regulated growth mechanisms can explain early epithelial cell branching, but only if epithelial cell division depends in a switch-like way on the local growth factor concentration; cell division occurring only if the driving growth factor level exceeds a threshold. We also show how a recently-developed method, “Approximate Approximate Bayesian Computation”, can be used to infer key model parameters, and reveal the dependency between the parameters controlling a growth factor-dependent growth switch. These results are consistent with a requirement for signals controlling proliferation and chemotaxis, both of which are previously identified roles for GDNF.Author SummaryA number of important congenital disorders arise due to incomplete development of the mammalian kidney. Elucidating the cause of these conditions requires an understanding of the mechanisms that contribute to kidney morphogenesis. Whilst experimental work has suggested several candidate mechanisms, their importance is still not well understood. Here we develop a computational model of kidney morphogenesis at the individual cell level to compare these different hypotheses. Guided by existing experimental evidence we propose that a generic growth factor, that we term “GDNF”, produced from the mesenchyme surrounding the epithelium, can drive a number of cellular responses. Simulations of our agent-based model reveal that diffusion of GDNF, coupled with GDNF-stimulated epithelial cell division, can generate the branching patterns seen in ex vivo kidney explant experiments. We also find that branching depends on the sensitivity of cell proliferation to changes in GDNF levels. In particular our model only generates realistic branching when there is significant variation in GDNF levels along the boundary of the epithelium, and most cells divide only if the local concentration of GDNF exceeds a threshold value. We conclude that feedback between mesenchymal cells that produce GDNF, and epithelial cells that consume it, is vital for normal kidney organogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3