Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches

Author:

Jin Victor X.,O’Geen Henriette,Iyengar Sushma,Green Roland,Farnham Peggy J.

Abstract

ChIP-chip studies have revealed that many in vivo binding sites have a weak match to the consensus sequence for the transcription factor being analyzed. Possible explanations for these observations include (1) the in vitro-derived consensus site does not represent the in vivo binding site and/or (2) the factor is recruited to a weak binding site via interaction with another protein. To address these possibilities, we developed an approach (ChIPMotifs) that incorporates a bootstrap resampling method to statistically infer the optimal cutoff threshold for a position weight matrix (PWM) of a motif identified from ChIP-chip data by ab initio motif discovery programs. Using OCT4 ChIP-chip data and the ChIPMotifs approach, we first developed a refined OCT4 PWM. We then used the refined PWM and a ChIPModules approach to identify transcription factors colocalizing with OCT4 in Ntera2 testicular embryonal carcinoma cells. We found that the consensus binding site for SRY, a transcription factor critical for testis development, colocalizes with the OCT4 PWM. To further characterize the relationship between OCT4 and SRY, we performed ChIP-chip experiments with human promoter microarrays, and found that 49% of the top ∼1000 OCT4 target promoters were also bound by SRY. This analysis represents the first identification of SRY target promoters. Interestingly, we determined that promoters bound by OCT4 and SRY, but not those bound by SRY alone, were also bound by the transcriptional repressor KAP1. Our studies not only validate the ChIPMotifs and ChIPModules combinatorial approach but also identify a possible new regulatory partner of OCT4.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Reference75 articles.

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3