Abstract
AbstractConsidering the recognized role of thyroid hormones on the cardiovascular system during health and disease, we hypothesized that type 2 deiodinase (D2) activity, the main activation pathway of thyroxine (T4)-to-triiodothyronine (T3), could be an important site to modulate thyroid hormone status, which would then constitute a possible target for β-adrenergic blocking agents in a myocardial infarction (MI) model induced by left coronary occlusion in rats. Despite a sustained and dramatic fall in serum T4 concentrations (60-70%), the serum T3 concentration fell only transiently in the first week post-infarction (53%) and returned to control levels at 8 and 12 weeks after surgery compared to Sham group (P<0.05). Brown adipose tissue (BAT) D2 activity (fmoles T4/min.mg ptn) was dramatically increased by approximately 77% in the 8th week and approximately 100% in the 12th week in the MI group compared to that of the Sham group (P<0.05). Beta-blocker treatment (propranolol given in the drinking water, 0.5 g/L) maintained a low T3 state in MI animals, dampening both BAT D2 activity (44% reduction) and serum T3 (66% reduction in serum T3) compared to that of the non-treated MI group 12 weeks after surgery (P<0.05). Propranolol improved cardiac function (assessed by echocardiogram) in MI group compared to MI-non treated one by 40 and 57 % 1 and 12 weeks after treatment respectively (P<0.05). Our data suggest that the beta-adrenergic pathway may contribute to BAT D2 hyperactivity and T3 normalization after MI in rats. Propranolol treatment maintains low T3 state and improves cardiac function additionally.
Publisher
Cold Spring Harbor Laboratory