A deep learning approach to pattern recognition for short DNA sequences

Author:

Busia Akosua,Dahl George E.,Fannjiang Clara,Alexander David H.,Dorfman Elizabeth,Poplin Ryan,McLean Cory Y.,Chang Pi-Chuan,DePristo Mark

Abstract

AbstractMotivationInferring properties of biological sequences--such as determining the species-of-origin of a DNA sequence or the function of an amino-acid sequence--is a core task in many bioinformatics applications. These tasks are often solved using string-matching to map query sequences to labeled database sequences or via Hidden Markov Model-like pattern matching. In the current work we describe and assess an deep learning approach which trains a deep neural network (DNN) to predict database-derived labels directly from query sequences.ResultsWe demonstrate this DNN performs at state-of-the-art or above levels on a difficult, practically important problem: predicting species-of-origin from short reads of 16S ribosomal DNA. When trained on 16S sequences of over 13,000 distinct species, our DNN achieves read-level species classification accuracy within 2.0% of perfect memorization of training data, and produces more accurate genus-level assignments for reads from held-out species thank-mer, alignment, and taxonomic binning baselines. Moreover, our models exhibit greater robustness than these existing approaches to increasing noise in the query sequences. Finally, we show that these DNNs perform well on experimental 16S mock community dataset. Overall, our results constitute a first step towards our long-term goal of developing a general-purpose deep learning approach to predicting meaningful labels from short biological sequences.AvailabilityTensorFlow training code is available through GitHub (https://github.com/tensorflow/models/tree/master/research). Data in TensorFlow TFRecord format is available on Google Cloud Storage (gs://brain-genomics-public/research/seq2species/).Contactseq2species-interest@google.comSupplementary informationSupplementary data are available in a separate document.

Publisher

Cold Spring Harbor Laboratory

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3