Abstract
AbstractSubcellular localisation of mitochondria provides a spatial and temporal organisation for cellular energy demands. Long-range mitochondrial transport is mediated by microtubule tracks and associated dynein and kinesin motor proteins. The actin cytoskeleton has a more versatile role and provides transport, tethering, and anchoring functions. SPIRE actin nucleators organise actin filament networks at vesicle membranes, which serve as tracks for myosin 5 motor protein-driven transport processes. Following alternative splicing, SPIRE1 is targeted to mitochondria. In analogy to vesicular SPIRE functions, we have analysed whether SPIRE1 regulates mitochondrial motility. By tracking mitochondria of living fibroblast cells fromSPIRE1mutant mice and splice-variant specific mitochondrial SPIRE1 knockout mice, we determined that the loss of SPIRE1 function increased mitochondrial motility. TheSPIRE1mutant phenotype was reversed by transient overexpression of mitochondrial SPIRE1, which almost completely inhibited motility. Conserved myosin 5 and formin interaction motifs contributed to this inhibition. Consistently, mitochondrial SPIRE1 targeted myosin 5 motors and formin actin filament generators to mitochondria. Our results indicate that SPIRE1 organises an actin/myosin network at mitochondria, which opposes mitochondrial motility.Summary statementThe mitochondrial SPIRE1 protein targets myosin 5 motor proteins and formin actin-filament nucleators/elongators towards mitochondria and negatively regulates mitochondrial motility.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献