Lagging strand encoding promotes adaptive evolution

Author:

Merrikh Christopher N.,Harris Leonard A.,Mangiameli Sarah,Merrikh HouraORCID

Abstract

AbstractCells may be able to promote adaptive evolution in a gene-specific and temporally-controlled manner. Genes encoded on the lagging strand have a higher mutation rate and evolve faster than genes on the leading strand. This effect is likely driven by head-on replication-transcription conflicts, which occur when lagging strand genes are transcribed during DNA replication. We previously suggested that the ability to selectively increase mutagenesis in a subset of genes may provide an adaptive advantage for cells. However, it is also possible that this effect could be neutral or even highly deleterious. Distinguishing between these models is important because, if the adaptive model is correct, it would indicate that 1) head-on conflicts, which are generally deleterious, can also provide a benefit to cells, and 2) cells possess the remarkable ability to fine-tune adaptive evolution. Furthermore, investigating these models may address the long-standing debate regarding whether accelerated evolution through conflicts can be adaptive. To distinguish between the adaptive and neutral models, we conducted single nucleotide polymorphism (SNP) analyses on wild strains of bacteria, from divergent phyla. To test the adaptive hypothesis, we analyzed convergent mutation patterns. As a simple test of the neutral hypothesis, we performed in silico modeling. Our results show that convergent mutations are enriched in lagging strand genes and that these mutations are unlikely to have arisen by chance. Additionally, we observe that convergent mutation frequency has a stronger positive correlation with gene-length in lagging strand genes. This effect strongly suggests that head-on conflicts between the DNA replication and transcription machineries are a key mechanism driving the formation of convergent mutations. Together, our data indicate that head-on replication-transcription conflicts can promote adaptive evolution in a variety of bacterial species, and potentially other organisms.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3