Selective vulnerability of aneuploid human cancer cells to inhibition of the spindle assembly checkpoint

Author:

Cohen-Sharir Yael,McFarland James M.,Abdusamad Mai,Marquis Carolyn,Tang Helen,Ippolito Marica R.,Bernhard Sara V.,Laue Kathrin,Malaby Heidi L.H.,Jones Andrew,Kazachkova Mariya,Lyons Nicholas,Nagaraja Ankur,Bass Adam J.,Beroukhim Rameen,Santaguida Stefano,Stumpff Jason,Golub Todd R.,Storchova Zuzana,Ben-David UriORCID

Abstract

AbstractSelective targeting of aneuploid cells is an attractive strategy for cancer treatment. Here, we mapped the aneuploidy landscapes of ~1,000 human cancer cell lines and classified them by their degree of aneuploidy. Next, we performed a comprehensive analysis of large-scale genetic and chemical perturbation screens, in order to compare the cellular vulnerabilities between near-diploid and highly-aneuploid cancer cells. We identified and validated an increased sensitivity of aneuploid cancer cells to genetic perturbation of core components of the spindle assembly checkpoint (SAC), which ensures the proper segregation of chromosomes during mitosis. Surprisingly, we also found highly-aneuploid cancer cells to be less sensitive to short-term exposures to multiple inhibitors of the SAC regulator TTK. To resolve this paradox and to uncover its mechanistic basis, we established isogenic systems of near-diploid cells and their aneuploid derivatives. Using both genetic and chemical inhibition of BUB1B, MAD2 and TTK, we found that the cellular response to SAC inhibition depended on the duration of the assay, as aneuploid cancer cells became increasingly more sensitive to SAC inhibition over time. The increased ability of aneuploid cells to slip from mitotic arrest and to keep dividing in the presence of SAC inhibition was coupled to aberrant spindle geometry and dynamics. This resulted in a higher prevalence of mitotic defects, such as multipolar spindles, micronuclei formation and failed cytokinesis. Therefore, although aneuploid cancer cells can overcome SAC inhibition more readily than diploid cells, the proliferation of the resultant aberrant cells is jeopardized. At the molecular level, analysis of spindle proteins identified a specific mitotic kinesin, KIF18A, whose levels were drastically reduced in aneuploid cancer cells. Aneuploid cancer cells were particularly vulnerable to KIF18A depletion, and KIF18A overexpression restored the sensitivity of aneuploid cancer cells to SAC inhibition. In summary, we identified an increased vulnerability of aneuploid cancer cells to SAC inhibition and explored its cellular and molecular underpinnings. Our results reveal a novel synthetic lethal interaction between aneuploidy and the SAC, which may have direct therapeutic relevance for the clinical application of SAC inhibitors.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3