Abstract
ABSTRACTIn the present study, we characterized antimicrobial resistance profile and genetic relatedness of Aeromonas spp. isolated from healthcare and urban effluents, wastewater treatment plant (WWTP), and river water. We detected the presence of genes responsible for the resistance to β-lactam, quinolone, and aminoglycoside. Enterobacterial Repetitive Intergenic Consensus PCR and multilocus sequence typing (MLST) were carried out to differentiate the strains and multilocus phylogenetic analysis (MLPA) was used to identify species. A total of 28 Aeromonas spp. cefotaxime-resistant strains were identified that carried a variety of resistance determinants, including uncommon GES-type β-lactamases. Multidrug-resistant Aeromonas spp. were found in hospital wastewater, WWTP, and sanitary effluent. Among these isolates, we detected A. caviae producing GES-1 or GES-5, as well as A. veronii harboring GES-7 or GES-16. We successfully identified Aeromonas spp. by using MLPA and found that A. caviae was the most prevalent species (85.7%). In contrast, it was not possible to determine sequence type of all isolates, suggesting incompleteness of the Aeromonas spp. MLST database. Our findings reinforce the notion about the ability of Aeromonas spp. to acquire determinants of antimicrobial resistance from the environment. Such ability can be enhanced by the release of untreated healthcare effluents, in addition to the presence of antimicrobials, recognized as potential factors for the spread of resistance. Thus, Aeromonas spp. could be included as priority pathogens under the One Health concept.IMPORTANCEAeromonas species are native bacteria in aquatic ecosystems worldwide. However, they have also been isolated from humans and animals. Globally, aquatic environments have been affected by anthropogenic activities. For example, the excessive use of antimicrobials in medical and veterinary practice causes the development of bacterial resistance. In addition, eliminated hospital and sanitary effluents can also serve as potential sources of bacteria carrying antimicrobial resistance genes. Thereby, impacted environments play an important role in the transmission of these pathogens, their evolution, and dissemination of genes conferring resistance to antimicrobials. Aeromonas spp. have been reported as a reservoir of antimicrobial resistance genes in the environment. In this study, we identified a great repertoire of antimicrobial resistance genes in Aeromonas spp. from diverse aquatic ecosystems, including those that encode enzymes degrading broad-spectrum antimicrobials widely used to treat healthcare-associated infections. These are a public health threat as they may spread in the population.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献