GWAS reveals the genetic complexity of fructan accumulation patterns in barley grain

Author:

Matros AndreaORCID,Houston Kelly,Tucker Matthew R.ORCID,Schreiber MiriamORCID,Berger BettinaORCID,Aubert Matthew K.ORCID,Wilkinson Laura G.,Witzel KatjaORCID,Waugh RobbieORCID,Seiffert UdoORCID,Burton Rachel A.ORCID

Abstract

AbstractWe profiled the grain oligosaccharide content of 154 two-row spring barley genotypes and quantified 27 compounds, mainly fructans, that exhibited differential abundance. Clustering revealed two major profile groups where the ‘high’ set contained greater amounts of sugar monomers, sucrose and overall fructans, but lower fructosylraffinose. GWAS identified a significant association for the variability of two fructan types; neoseries-DP7 and inulin-DP9 which showed increased strength when a compound-ratio GWAS was applied. Gene models within this region included five fructan biosynthesis genes, of which three (fructan:fructan 1-fructosyltransferase, sucrose:sucrose 1-fructosyltransferase, and sucrose:fructan 6-fructosyltransferase) have already been described. The remaining two, 6(G)-fructosyltransferase and vacuolar invertase1 have not previously been linked to fructan biosynthesis in barley and showed expression patterns distinct from those of the other three genes, including exclusive expression of 6(G)-fructosyltransferase in outer grain tissues at the storage phase. From exome capture data several SNPs related to inulin- and neoseries-type fructan variability were identified in fructan:fructan 1-fructosyltransferase and 6(G)-fructosyltransferase genes Co-expression analyses uncovered potential regulators of fructan biosynthesis including transcription factors. Our results provide evidence for the distinct biosynthesis of neoseries-type fructans during barley grain maturation plus new gene candidates likely involved in the differential biosynthesis of the various fructan types.HighlightGrain fructan profiles in barley are more complex than previously expected and variations in a diversity panel relate to a genomic region where fructan biosynthesis genes cluster.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3