Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and cartilage regeneration in osteoarthritis

Author:

Varela-Eirín MartaORCID,Varela-Vázquez AdriánORCID,Paíno Carlos Luis,Casado-Díaz Antonio,Continente Alfonso Calañas,Mato VirginiaORCID,Fonseca Eduardo,Kandouz Mustapha,Blanco Alfonso,Caeiro José Ramón,Mayán María D.ORCID

Abstract

AbstractOsteoarthritis (OA) is the most prevalent disorder of articulating joints and a leading cause of disability in humans, affecting half of the world’s population aged 65 years or older. Articular cartilage and synovial tissue from OA patients show an overactivity of the membrane channel protein connexin43 (Cx43) and accumulation of senescent cells associated with disrupted tissue regeneration. We have recently demonstrated the use of the Cx43 as an appropriate therapeutic target to halt OA progression by decreasing the accumulation of senescent cells and by triggering redifferentiation of osteoarthritic chondrocytes (OACs) into a more differentiated state, restoring the fully mature phenotype and cartilage regeneration. In this study we have found that small molecular polyphenols derived by olive extracts target Cx43 and senescence in OACs, synovial and bone cells from patients and in human mesenchymal stem cells (hMSCs). Our results indicate that these small molecules including oleuropein regulate the promoter activity of Cx43 gene. The downregulation of Cx43 expression by oleuropein reduce gap junction intercellular communication, cellular senescence in chondrocytes and enhance the propensity of hMSCs to differentiate into chondrocytes and bone cells, reducing adipogenesis. In concordance with these results, these small molecules reduce Cx43 and decrease Twist-1 activity leading to redifferentiation of OACs, which restores the synthesis of cartilage ECM components (Col2A1 and proteoglycans) and reduces inflammatory and catabolic factors IL-1β, IL-6, COX-2 and MMP-3 and cellular senescence orchestrated by p53/p21 together with the synthesis of SASP via NF-kB. Altogether, our results demonstrate the use of the olive-derived polyphenols such as oleuropein as potentially effective therapeutic agents to enhance the efficacy of hMSC therapy and to induce a pro-regenerative environment in OA patients by restoring cellular phenotype and clearing out senescent cells in joint tissues in order to stop or prevent the progression of the disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Senolytic Phytocompounds in Redox Signaling;Healthy Ageing and Longevity;2021-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3