Evolved, Selective Erasers of Distinct Lysine Acylations

Author:

Spinck Martin,Ecke Maria,Gasper Raphael,Neumann HeinzORCID

Abstract

AbstractLysine acetylation, including related lysine modifications such as butyrylation and crotonylation, is a widespread post-translational modification with important roles in many important physiological processes. However, uncovering the regulatory mechanisms that govern the reverse process, deacylation, has been challenging to address, in great part because the small set of lysine deacetylases (KDACs) that remove the modifications are promiscuous in their substrate and acylation-type preference. This lack of selectivity hinders a broader understanding of how deacylation is regulated at the cellular level and how it is correlated with lysine deacylation-related diseases. To facilitate the dissection of KDACs with respect to substrate specificity and modification type, it would be beneficial to re-engineer KDACs to be selective towards a given substrate and/or modification. To dissect the differential contributions of various acylations to cell physiology, we developed a novel directed evolution approach to create selective KDAC variants that are up to 400-fold selective towards butyryl- over crotonyl-lysine substrates. Structural analyses of this non-promiscuous KDAC revealed unprecedented insights regarding the conformational changes mediating the gain in specificity. As a second case study to illustrate the power of this approach, we re-engineer the human SirT1 to increase its selectivity towards acetylated versus crotonylated substrates. These new enzymes, as well as the generic approach that we report here, will greatly facilitate the dissection of the differential roles of lysine acylation in cell physiology.Significance StatementAcetylation of lysine residues features numerous roles in diverse physiological processes and correlates with the manifestation of metabolic diseases, cancer and ageing. The already huge diversity of the acetylome is multiplied by variations in the types of acylation. This complexity is in stark contrast to the small set of lysine deacetylases (KDACs) present in human cells, anticipating a pronounced substrate promiscuity.We device a strategy to tackle this disarray by creating KDAC variants with increased selectivity towards particular types of lysine acylations using a novel selection system. The variants facilitate the dissection of the differential contributions of particular acylations to gene expression, development and disease. Our structural analyses shed light on the mechanism of substrate discrimination by Sirtuin-type KDACs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3