Abstract
AbstractMutant KRAS is present in over 90% of pancreatic as well as 30-40% of lung and colorectal cancers and is one of the most common oncogenic drivers. Despite decades of research and the recent emergence of isoform-specific KRASG12C-inhibitors, most mutant KRAS isoforms, including the ones frequently associated with pancreatic ductal adenocarcinoma (PDAC), cannot be targeted directly. Moreover, targeting single RAS downstream effectors induces adaptive mechanisms leading to tumor recurrence or resistance. We report here on the combined inhibition of SHP2, a non-receptor tyrosine phosphatase upstream of KRAS, and ERK, a serine/threonine kinase and a key molecule downstream of KRAS in PDAC. This combination shows synergistic anticancer activity in vitro, superior disruption of the MAPK pathway, and significantly increased apoptosis induction compared to single-agent treatments. In vivo, we demonstrate good tolerability and efficacy of the combination. Concurrent inhibition of SHP2 and ERK induces significant tumor regression in multiple PDAC mouse models. Finally, we show evidence that 18F-FDG PET scans can be used to detect and predict early drug responses in animal models. Based on these compelling results, we will investigate this drug combination in a clinical trial (SHERPA, SHP2 and ERK inhibition in pancreatic cancer, NCT04916236), enrolling patients with KRAS-mutant PDAC.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献