Liquid-liquid phase separation facilitates the biogenesis of secretory storage granules
Author:
Parchure Anup, Tian Meng, Boyer Cierra K, Bearrows Shelby C, Rohli Kristen E, Zhang Jianchao, Ramazanov Bulat R, Wang YanzhuangORCID, Stephens Samuel BORCID, von Blume Julia
Abstract
AbstractInsulin is a key regulator of human metabolism, and its dysfunction leads to diseases such as type 2 diabetes. It remains unknown how proinsulin is targeted from the trans-Golgi network (TGN) to secretory storage granules as no cargo receptor has been identified. Chromogranin proteins (CGs) are central regulators of granule biosynthesis, and it was proposed that their aggregation is critical for this process. However, the molecular mechanism by which these molecules facilitate sorting at the TGN is poorly understood. Here, we show that CGs undergo liquid–liquid phase separation (LLPS) at low pH independently of divalent cations, such as calcium. Liquid CG condensates, but not aggregates, recruit and sort proinsulin and other granule-destined cargo molecules towards secretory granules. Cargo selectivity is independent of sequence or structural elements but is based on the size and concentration of the client molecules at the TGN. Finally, electrostatic interactions and the N-terminal intrinsically disordered domain of chromogranin B facilitate LLPS and are critical for granule formation. We propose that phase-separated CGs act as a “cargo sponge” within the TGN lumen, gathering soluble client proteins into the condensate independently of specific sequence or structural elements, facilitating receptor-independent sorting. These findings challenge the canonical TGN sorting models and provide insights into granule biosynthesis in insulin-secreting β-cells.One sentence summaryLiquid Chromogranin condensates recruit cargo molecules at the TGN for their delivery to secretory storage granules.
Publisher
Cold Spring Harbor Laboratory
Reference89 articles.
1. M. Uhlén , M. J. Karlsson , A. Hober , A.-S. Svensson , J. Scheffel , D. Kotol , W. Zhong , A. Tebani , L. Strandberg , F. Edfors , E. Sjöstedt , J. Mulder , A. Mardinoglu , A. Berling , S. Ekblad , M. Dannemeyer , S. Kanje , J. Rockberg , M. Lundqvist , M. Malm , A.-L. Volk , P. Nilsson , A. Månberg , T. Dodig-Crnkovic , E. Pin , M. Zwahlen , P. Oksvold , K. von Feilitzen , R. S. Häussler , M.-G. Hong , C. Lindskog , F. Ponten , B. Katona , J. Vuu , E. Lindström , J. Nielsen , J. Robinson , B. Ayoglu , D. Mahdessian , D. Sullivan , P. Thul , F. Danielsson , C. Stadler , E. Lundberg , G. Bergström , A. Gummesson , B. G. Voldborg , H. Tegel , S. Hober , B. Forsström , J. M. Schwenk , L. Fagerberg , Å. Sivertsson , The human secretome. Sci. Signal. 12 , eaa z0274 (2019). 2. The extracellular matrix at a glance 3. TERTIARY STRUCTURE OF BACTERIORHODOPSIN 4. Protein Sorting Receptors in the Early Secretory Pathway 5. BIOSYNTHETIC PROTEIN TRANSPORT AND SORTING BY THE ENDOPLASMIC RETICULUM AND GOLGI
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|