Author:
Zebrowitz Elan,Kajikawa Tetsuhiro,Bedelbaeva Kamila,Aslanukov Azamat,Bollinger Sam,Zhang Yong,Sarfatti David,Cheng Jing,Messersmith Phillip B.,Hajishengallis George,Heber-Katz Ellen
Abstract
AbstractBone injuries and fractures reliably heal through a process of regeneration with restoration to original structure and function when the gap between adjacent sides of a fracture site is small. However, when there is significant volumetric loss of bone, bone regeneration usually does not occur.In the present studies, we explore a particular case of volumetric bone loss in a mouse model of human periodontal disease (PD) in which alveolar bone surrounding teeth is permanently lost and not replaced. This model employs the placement a ligature around the upper second molar which leads to inflammation and bone breakdown and faithfully replicates the bacterially-induced inflammatory etiology of human PD to induce bone degeneration. After 10 days, the ligature is removed and the mice are treated with a timed-release formulation of a small molecule inhibitor of prolylhydroxylases (PHDi; 1,4-DPCA) previously shown to induce epimorphic regeneration of soft tissue in non-regenerating mice. This PHDi induces high expression of HIF-1α and the regenerative response is completely blocked by siHIF1a. Here, we observe that timed-release 1,4-DPCA rapidly and completely restores bone and soft tissue with normal anatomic fidelity and with increased stem cell markers due to stem cell migration into the site and/or de-differentiation of local tissue, PDL cell proliferation, and increased vascularization. In-vitro studies using gingival tissue show that 1,4-DPCA indeed induces de-differentiation and the expression of stem cell markers but does not exclude the role of migrating stem cells.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献