Nanoscale structural organization and stoichiometry of the budding yeast kinetochore

Author:

Cieslinski KonstantyORCID,Wu Yu-LeORCID,Nechyporenko Lisa,Hörner Sarah Janice,Conti Duccio,Ries JonasORCID

Abstract

AbstractProper chromosome segregation is crucial for cell division. In eukaryotes, this is achieved by the kinetochore, an evolutionarily conserved multi-protein complex that physically links the DNA to spindle microtubules, and takes an active role in monitoring and correcting erroneous spindle-chromosome attachments. Our mechanistic understanding of these functions, and how they ensure an error-free outcome of mitosis, is still limited, partly because we lack a comprehensive understanding of the kinetochore structure in the cell. In this study, we use single molecule localization microscopy to visualize individual kinetochore complexes in situ in budding yeast. For all major kinetochore proteins, we measured abundance and position within the metaphase kinetochore. Based on this comprehensive dataset, we propose a quantitative model of the budding yeast kinetochore. While confirming many aspects of previous reports based on bulk imaging of kinetochores, our results present a somewhat different but unifying model of the inner kinetochore. We find that the centromere-specialized histone Cse4 is present in more than two copies per kinetochore along with its binding partner Mif2.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3